All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Recall@k Surrogate Loss with Large Batches and Similarity Mixup

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362948" target="_blank" >RIV/68407700:21230/22:00362948 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR52688.2022.00735" target="_blank" >https://doi.org/10.1109/CVPR52688.2022.00735</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR52688.2022.00735" target="_blank" >10.1109/CVPR52688.2022.00735</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Recall@k Surrogate Loss with Large Batches and Similarity Mixup

  • Original language description

    This work focuses on learning deep visual representation models for retrieval by exploring the interplay between a new loss function, the batch size, and a new regularization approach. Direct optimization, by gradient descent, of an evaluation metric, is not possible when it is non-differentiable, which is the case for recall in retrieval. A differentiable surrogate loss for the recall is proposed in this work. Using an implementation that sidesteps the hardware constraints of the GPU memory, the method trains with a very large batch size, which is essential for metrics computed on the entire retrieval database. It is assisted by an efficient mixup regularization approach that operates on pairwise scalar similarities and virtually increases the batch size further. The suggested method achieves state-of-the-art performance in several image retrieval benchmarks when used for deep metric learning. For instance-level recognition, the method outperforms similar approaches that train using an approximation of average precision.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceeding 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • ISBN

    978-1-6654-6946-3

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    10

  • Pages from-to

    7492-7501

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    New Orleans, Louisiana

  • Event date

    Jun 19, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000870759100033