The Hitchhiker's Guide to Prior-Shift Adaptation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363002" target="_blank" >RIV/68407700:21230/22:00363002 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/WACV51458.2022.00209" target="_blank" >https://doi.org/10.1109/WACV51458.2022.00209</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV51458.2022.00209" target="_blank" >10.1109/WACV51458.2022.00209</a>
Alternative languages
Result language
angličtina
Original language name
The Hitchhiker's Guide to Prior-Shift Adaptation
Original language description
In many computer vision classification tasks, class priors at test time often differ from priors on the training set. In the case of such prior shift, classifiers must be adapted correspondingly to maintain close to optimal performance. This paper analyzes methods for adaptation of probabilistic classifiers to new priors and for estimating new priors on an unlabeled test set. We propose a novel method to address a known issue of prior estimation methods based on confusion matrices, where inconsistent estimates of decision probabilities and confusion matrices lead to negative values in the estimated priors. Experiments on fine-grained image classification datasets provide insight into the best practice of prior shift estimation and classifier adaptation, and show that the proposed method achieves state-of-the-art results in prior adaptation. Applying the best practice to two tasks with naturally imbalanced priors, learning from web-crawled images and plant species classification, increased the recognition accuracy by 1.1% and 3.4% respectively.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022
ISBN
978-1-6654-0915-5
ISSN
2472-6737
e-ISSN
2642-9381
Number of pages
9
Pages from-to
2031-2039
Publisher name
IEEE Computer Society
Place of publication
USA
Event location
Waikoloa
Event date
Jan 3, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000800471202010