All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Hitchhiker's Guide to Prior-Shift Adaptation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363002" target="_blank" >RIV/68407700:21230/22:00363002 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/WACV51458.2022.00209" target="_blank" >https://doi.org/10.1109/WACV51458.2022.00209</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/WACV51458.2022.00209" target="_blank" >10.1109/WACV51458.2022.00209</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Hitchhiker's Guide to Prior-Shift Adaptation

  • Original language description

    In many computer vision classification tasks, class priors at test time often differ from priors on the training set. In the case of such prior shift, classifiers must be adapted correspondingly to maintain close to optimal performance. This paper analyzes methods for adaptation of probabilistic classifiers to new priors and for estimating new priors on an unlabeled test set. We propose a novel method to address a known issue of prior estimation methods based on confusion matrices, where inconsistent estimates of decision probabilities and confusion matrices lead to negative values in the estimated priors. Experiments on fine-grained image classification datasets provide insight into the best practice of prior shift estimation and classifier adaptation, and show that the proposed method achieves state-of-the-art results in prior adaptation. Applying the best practice to two tasks with naturally imbalanced priors, learning from web-crawled images and plant species classification, increased the recognition accuracy by 1.1% and 3.4% respectively.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022

  • ISBN

    978-1-6654-0915-5

  • ISSN

    2472-6737

  • e-ISSN

    2642-9381

  • Number of pages

    9

  • Pages from-to

    2031-2039

  • Publisher name

    IEEE Computer Society

  • Place of publication

    USA

  • Event location

    Waikoloa

  • Event date

    Jan 3, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000800471202010