All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Stochastic approximation of lamplighter metrics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363345" target="_blank" >RIV/68407700:21230/22:00363345 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1112/blms.12657" target="_blank" >https://doi.org/10.1112/blms.12657</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms.12657" target="_blank" >10.1112/blms.12657</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Stochastic approximation of lamplighter metrics

  • Original language description

    We observe that embeddings into random metrics can be fruitfully used to study the L-1-embeddability of lamplighter graphs or groups, and more generally lamplighter metric spaces. Once this connection has been established, several new upper bound estimates on the L-1-distortion of lamplighter metrics follow from known related estimates about stochastic embeddings into dominating tree-metrics. For instance, every lamplighter metric on an n-point metric space embeds bi-Lipschitzly into L-1 with distortion O(logn). In particular, for every finite group G the lamplighter group H=Z(2) gimel G bi-Lipschitzly embeds into L-1 with distortion O(loglog|H|). In the case where the ground space in the lamplighter construction is a graph with some topological restrictions, better distortion estimates can be achieved. Finally, we discuss how a coarse embedding into L-1 of the lamplighter group over the d-dimensional infinite lattice Z(d) can be constructed from bi-Lipschitz embeddings of the lamplighter graphs over finite d-dimensional grids, and we include a remark on Lipschitz free spaces over finite metric spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the London Mathematical Society

  • ISSN

    0024-6093

  • e-ISSN

    1469-2120

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    23

  • Pages from-to

    1804-1826

  • UT code for WoS article

    000787367900001

  • EID of the result in the Scopus database

    2-s2.0-85128812683