Stochastic approximation of lamplighter metrics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363345" target="_blank" >RIV/68407700:21230/22:00363345 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1112/blms.12657" target="_blank" >https://doi.org/10.1112/blms.12657</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms.12657" target="_blank" >10.1112/blms.12657</a>
Alternative languages
Result language
angličtina
Original language name
Stochastic approximation of lamplighter metrics
Original language description
We observe that embeddings into random metrics can be fruitfully used to study the L-1-embeddability of lamplighter graphs or groups, and more generally lamplighter metric spaces. Once this connection has been established, several new upper bound estimates on the L-1-distortion of lamplighter metrics follow from known related estimates about stochastic embeddings into dominating tree-metrics. For instance, every lamplighter metric on an n-point metric space embeds bi-Lipschitzly into L-1 with distortion O(logn). In particular, for every finite group G the lamplighter group H=Z(2) gimel G bi-Lipschitzly embeds into L-1 with distortion O(loglog|H|). In the case where the ground space in the lamplighter construction is a graph with some topological restrictions, better distortion estimates can be achieved. Finally, we discuss how a coarse embedding into L-1 of the lamplighter group over the d-dimensional infinite lattice Z(d) can be constructed from bi-Lipschitz embeddings of the lamplighter graphs over finite d-dimensional grids, and we include a remark on Lipschitz free spaces over finite metric spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the London Mathematical Society
ISSN
0024-6093
e-ISSN
1469-2120
Volume of the periodical
54
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
23
Pages from-to
1804-1826
UT code for WoS article
000787367900001
EID of the result in the Scopus database
2-s2.0-85128812683