All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Bi-Lipschitz Geometry of Lamplighter Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355104" target="_blank" >RIV/68407700:21230/21:00355104 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00454-020-00184-1" target="_blank" >https://doi.org/10.1007/s00454-020-00184-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-020-00184-1" target="_blank" >10.1007/s00454-020-00184-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Bi-Lipschitz Geometry of Lamplighter Graphs

  • Original language description

    In this article we start a systematic study of the bi-Lipschitz geometry of lamplighter graphs. We prove that lamplighter graphs over trees bi-Lipschitzly embed into Hamming cubes with distortion at most 6. It follows that lamplighter graphs over countable trees bi-Lipschitzly embed into l1. We study the metric behaviour of the operation of taking the lamplighter graph over the vertex-coalescence of two graphs. Based on this analysis, we provide metric characterisations of superreflexivity in terms of lamplighter graphs over star graphs or rose graphs. Finally, we show that the presence of a clique in a graph implies the presence of a Hamming cube in the lamplighter graph over it. An application is a characterisation, in terms of a sequence of graphs with uniformly bounded degree, of the notion of trivial Bourgain-Milman-Wolfson type for arbitrary metric spaces, similar to Ostrovskii's characterisation previously obtained in Ostrovskii (C. R. Acad. Bulgare Sci. 64(6), 775-784 (2011)).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete & Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

    1432-0444

  • Volume of the periodical

    66

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    33

  • Pages from-to

    203-235

  • UT code for WoS article

    000517693400001

  • EID of the result in the Scopus database

    2-s2.0-85081350034