Some examples of quantum graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363356" target="_blank" >RIV/68407700:21230/22:00363356 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11005-022-01603-5" target="_blank" >https://doi.org/10.1007/s11005-022-01603-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11005-022-01603-5" target="_blank" >10.1007/s11005-022-01603-5</a>
Alternative languages
Result language
angličtina
Original language name
Some examples of quantum graphs
Original language description
We summarize different approaches to the theory of quantum graphs and provide several ways to construct concrete examples. First, we classify all undirected quantum graphs on the quantum space M-2. Secondly, we apply the theory of 2-cocycle deformations to Cayley graphs of abelian groups. This defines a twisting procedure that produces a quantum graph, which is quantum isomorphic to the original one. For instance, we define the anticommutative hypercube graphs. Thirdly, we construct an example of a quantum graph, which is not quantum isomorphic to any classical graph.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Letters in Mathematical Physics
ISSN
0377-9017
e-ISSN
1573-0530
Volume of the periodical
112
Issue of the periodical within the volume
6
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
49
Pages from-to
—
UT code for WoS article
000888746000001
EID of the result in the Scopus database
2-s2.0-85142473325