Self-small products of abelian groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363369" target="_blank" >RIV/68407700:21230/22:00363369 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10452312
Result on the web
<a href="https://doi.org/10.14712/1213-7243.2022.020" target="_blank" >https://doi.org/10.14712/1213-7243.2022.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/1213-7243.2022.020" target="_blank" >10.14712/1213-7243.2022.020</a>
Alternative languages
Result language
angličtina
Original language name
Self-small products of abelian groups
Original language description
Let A and B be two abelian groups. The group A is called B-small if the covariant functor Hom(A,-) commutes with all direct sums B(k) and A is self-small provided it is A-small. The paper characterizes self-small products applying developed closure properties of the classes of relatively small groups. As a consequence, self-small products of finitely generated abelian groups are described.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
1213-7243
Volume of the periodical
63
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
13
Pages from-to
145-157
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85142302676