All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Varieties of Qantitative Algebras and Their Monads

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363394" target="_blank" >RIV/68407700:21230/22:00363394 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1145/3531130.3532405" target="_blank" >https://doi.org/10.1145/3531130.3532405</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3531130.3532405" target="_blank" >10.1145/3531130.3532405</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Varieties of Qantitative Algebras and Their Monads

  • Original language description

    Quantitative Σ-algebras, where Σ is a signature with countable arities, are Σ-algebras equipped with a metric making all operations nonexpanding. They have been studied by Mardare, Panangaden and Plotkin who also introduced c-basic quantitative equations for regular cardinals c. Categories of quantitative algebras that can be presented by such equations for c = ℵ1 are called ω1-varieties. We prove that they are precisely the monadic categories , where is a countably basic monad on the category of metric spaces. For Σ finitary one speaks about ω-varieties for c = ℵ0. If all spaces used are restricted to UMet, the category of ultrametric spaces, then ω-varieties are precisely the monadic categories , where is a finitely basic monad.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science

  • ISBN

    978-1-4503-9351-5

  • ISSN

    1043-6871

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    1-10

  • Publisher name

    Association for Computing Machinery

  • Place of publication

    New York

  • Event location

    Haifa

  • Event date

    Aug 2, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article