All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Strongly Finitary Monads for Varieties of Quantitative Algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373105" target="_blank" >RIV/68407700:21230/23:00373105 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.CALCO.2023.10" target="_blank" >https://doi.org/10.4230/LIPIcs.CALCO.2023.10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.CALCO.2023.10" target="_blank" >10.4230/LIPIcs.CALCO.2023.10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Strongly Finitary Monads for Varieties of Quantitative Algebras

  • Original language description

    Quantitative algebras are algebras enriched in the category Met of metric spaces or UMet of ultrametric spaces so that all operations are nonexpanding. Mardare, Plotkin and Panangaden introduced varieties (aka 1-basic varieties) as classes of quantitative algebras presented by quantitative equations. We prove that, when restricted to ultrametrics, varieties bijectively correspond to strongly finitary monads T on UMet. This means that T is the left Kan extension of its restriction to finite discrete spaces. An analogous result holds in the category CUMet of complete ultrametric spaces.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)

  • ISBN

    978-3-95977-287-7

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Bloomington

  • Event date

    Jun 19, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article