Strongly Finitary Monads for Varieties of Quantitative Algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373105" target="_blank" >RIV/68407700:21230/23:00373105 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.CALCO.2023.10" target="_blank" >https://doi.org/10.4230/LIPIcs.CALCO.2023.10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CALCO.2023.10" target="_blank" >10.4230/LIPIcs.CALCO.2023.10</a>
Alternative languages
Result language
angličtina
Original language name
Strongly Finitary Monads for Varieties of Quantitative Algebras
Original language description
Quantitative algebras are algebras enriched in the category Met of metric spaces or UMet of ultrametric spaces so that all operations are nonexpanding. Mardare, Plotkin and Panangaden introduced varieties (aka 1-basic varieties) as classes of quantitative algebras presented by quantitative equations. We prove that, when restricted to ultrametrics, varieties bijectively correspond to strongly finitary monads T on UMet. This means that T is the left Kan extension of its restriction to finite discrete spaces. An analogous result holds in the category CUMet of complete ultrametric spaces.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)
ISBN
978-3-95977-287-7
ISSN
1868-8969
e-ISSN
—
Number of pages
14
Pages from-to
—
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl
Event location
Bloomington
Event date
Jun 19, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—