All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards Visual Classification Under Class Ambiguity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367286" target="_blank" >RIV/68407700:21230/23:00367286 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/23:00367286

  • Result on the web

    <a href="https://doi.org/10.1109/ICRA48891.2023.10161568" target="_blank" >https://doi.org/10.1109/ICRA48891.2023.10161568</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICRA48891.2023.10161568" target="_blank" >10.1109/ICRA48891.2023.10161568</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards Visual Classification Under Class Ambiguity

  • Original language description

    Visual classification under uncertainty is a complex computer vision problem. We present a thorough comparison of several variants of convolutional neural network (CNN) classification techniques in the context of ambiguous image data interpretation. We explore possible improvements in classification accuracy achieved by insertion of prior ambiguity information during the annotation process. This enables us to harness known similarities between individual classes and use them as probability distributions for soft ground-truth labels. We also present an approach based on Bayesian CNNs, offering the possibility of further interpretation of classification results in a problem where the neural network model is often considered as a black box. The presented techniques are verified on a practical spot weld inspection problem.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/FW03010600" target="_blank" >FW03010600: Autonomous robotic system for ultrasonic and eddy current inspection of metal and composite parts of complex shapes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2023 IEEE International Conference on Robotics and Automation

  • ISBN

    979-8-3503-2365-8

  • ISSN

    1050-4729

  • e-ISSN

    2577-087X

  • Number of pages

    7

  • Pages from-to

    7032-7038

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Londýn

  • Event date

    May 29, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001048371100005