All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tetra-NeRF: Representing Neural Radiance Fields Using Tetrahedra

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369657" target="_blank" >RIV/68407700:21230/23:00369657 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/23:00369657

  • Result on the web

    <a href="https://doi.org/10.1109/ICCV51070.2023.01692" target="_blank" >https://doi.org/10.1109/ICCV51070.2023.01692</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCV51070.2023.01692" target="_blank" >10.1109/ICCV51070.2023.01692</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tetra-NeRF: Representing Neural Radiance Fields Using Tetrahedra

  • Original language description

    Neural Radiance Fields (NeRFs) are a very recent and very popular approach for the problems of novel view syn thesis and 3D reconstruction. A popular scene representa tion used by NeRFs is to combine a uniform, voxel-based subdivision of the scene with an MLP. Based on the ob servation that a (sparse) point cloud of the scene is often available, this paper proposes to use an adaptive represen tation based on tetrahedra obtained by Delaunay triangula tion instead of uniform subdivision or point-based represen tations. We show that such a representation enables efficient training and leads to state-of-the-art results. Our approach elegantly combines concepts from 3D geometry process ing, triangle-based rendering, and modern neural radiance fields. Compared to voxel-based representations, ours pro vides more detail around parts of the scene likely to be close to the surface. Compared to point-based representations, our approach achieves better performance. The source code is publicly available at: https://jkulhanek.com/tetra-nerf.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX23-07973X" target="_blank" >GX23-07973X: A Unified 3D Map Representation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICCV2023: Proceedings of the International Conference on Computer Vision

  • ISBN

    979-8-3503-0719-1

  • ISSN

    1550-5499

  • e-ISSN

    2380-7504

  • Number of pages

    12

  • Pages from-to

    18412-18423

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Paris

  • Event date

    Oct 2, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001169500503004