Adaptive Reordering Sampler with Neurally Guided MAGSAC
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369997" target="_blank" >RIV/68407700:21230/23:00369997 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ICCV51070.2023.01665" target="_blank" >https://doi.org/10.1109/ICCV51070.2023.01665</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV51070.2023.01665" target="_blank" >10.1109/ICCV51070.2023.01665</a>
Alternative languages
Result language
angličtina
Original language name
Adaptive Reordering Sampler with Neurally Guided MAGSAC
Original language description
We propose a new sampler for robust estimators that always selects the sample with the highest probability of consisting only of inliers. After every unsuccessful iteration, the inlier probabilities are updated in a principled way via a Bayesian approach. The probabilities obtained by the deep network are used as prior (so-called neural guidance) inside the sampler. Moreover, we introduce a new loss that exploits, in a geometrically justifiable manner, the orientation and scale that can be estimated for any type of feature, e.g., SIFT or SuperPoint, to estimate two-view geometry. The new loss helps to learn higher-order information about the underlying scene geometry. Benefiting from the new sampler and the proposed loss, we combine the neural guidance with the state-of-the-art MAGSAC++. Adaptive Reordering Sampler with Neurally Guided MAGSAC (ARS-MAGSAC) is superior to the state-of-the-art in terms of accuracy and run-time on the PhotoTourism and KITTI datasets for essential and fundamental matrix estimation. The code and trained models are available at https://github.com/weitong8591/ars_magsac.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ICCV2023: Proceedings of the International Conference on Computer Vision
ISBN
979-8-3503-0719-1
ISSN
1550-5499
e-ISSN
2380-7504
Number of pages
11
Pages from-to
18117-18127
Publisher name
IEEE
Place of publication
Piscataway
Event location
Paris
Event date
Oct 2, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001169500502068