High-speed adaptive analog filter based on fully analog artificial neural network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00370237" target="_blank" >RIV/68407700:21230/23:00370237 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/cta.3701" target="_blank" >https://doi.org/10.1002/cta.3701</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cta.3701" target="_blank" >10.1002/cta.3701</a>
Alternative languages
Result language
angličtina
Original language name
High-speed adaptive analog filter based on fully analog artificial neural network
Original language description
This paper presents an innovative concept of a high-speed and higher order adaptive filter. A fully analog artificial neural network handles the adaption by using a filter bank for filtering and learning through analog feedback inspired by backpropagation. There is no clock control used in this concept, which makes real-time adaption possible even for high frequencies. Its functionality is shown by several electrical circuit simulations involving component inaccuracies as well as a commonly used filter example.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Circuit Theory and Applications
ISSN
0098-9886
e-ISSN
1097-007X
Volume of the periodical
51
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
5543-5554
UT code for WoS article
001025483600001
EID of the result in the Scopus database
2-s2.0-85164735164