All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cold Analysis of Rao-Blackwellized Straight-Through Gumbel-Softmax Gradient Estimator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371050" target="_blank" >RIV/68407700:21230/23:00371050 - isvavai.cz</a>

  • Result on the web

    <a href="https://proceedings.mlr.press/v202/shekhovtsov23a.html" target="_blank" >https://proceedings.mlr.press/v202/shekhovtsov23a.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cold Analysis of Rao-Blackwellized Straight-Through Gumbel-Softmax Gradient Estimator

  • Original language description

    Many problems in machine learning require an estimate of the gradient of an expectation in discrete random variables with respect to the sampling distribution. This work is motivated by the development of the Gumbel-Softmax family of estimators, which use a temperature-controlled relaxation of discrete variables. The state-of-the art in this family, the Gumbel-Rao estimator uses an extra internal sampling to reduce the variance, which may be costly. We analyze this estimator and show that it possesses a zero temperature limit with a surprisingly simple closed form. The limit estimator, called ZGR, has favorable bias and variance properties, it is easy to implement and computationally inexpensive. It decomposes as the average of the straight through (ST) estimator and DARN estimator — two basic but not very well performing on their own estimators. We demonstrate that the simple ST–ZGR family of estimators practically dominates in the bias-variance tradeoffs the whole GR family while also outperforming SOTA unbiased estimators.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    International Conference on Machine Learning (ICML)

  • ISBN

  • ISSN

    2640-3498

  • e-ISSN

    2640-3498

  • Number of pages

    25

  • Pages from-to

    30931-30955

  • Publisher name

    Proceedings of Machine Learning Research

  • Place of publication

  • Event location

    Honolulu, USA

  • Event date

    Jul 23, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article