Cold Analysis of Rao-Blackwellized Straight-Through Gumbel-Softmax Gradient Estimator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371050" target="_blank" >RIV/68407700:21230/23:00371050 - isvavai.cz</a>
Result on the web
<a href="https://proceedings.mlr.press/v202/shekhovtsov23a.html" target="_blank" >https://proceedings.mlr.press/v202/shekhovtsov23a.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Cold Analysis of Rao-Blackwellized Straight-Through Gumbel-Softmax Gradient Estimator
Original language description
Many problems in machine learning require an estimate of the gradient of an expectation in discrete random variables with respect to the sampling distribution. This work is motivated by the development of the Gumbel-Softmax family of estimators, which use a temperature-controlled relaxation of discrete variables. The state-of-the art in this family, the Gumbel-Rao estimator uses an extra internal sampling to reduce the variance, which may be costly. We analyze this estimator and show that it possesses a zero temperature limit with a surprisingly simple closed form. The limit estimator, called ZGR, has favorable bias and variance properties, it is easy to implement and computationally inexpensive. It decomposes as the average of the straight through (ST) estimator and DARN estimator — two basic but not very well performing on their own estimators. We demonstrate that the simple ST–ZGR family of estimators practically dominates in the bias-variance tradeoffs the whole GR family while also outperforming SOTA unbiased estimators.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
International Conference on Machine Learning (ICML)
ISBN
—
ISSN
2640-3498
e-ISSN
2640-3498
Number of pages
25
Pages from-to
30931-30955
Publisher name
Proceedings of Machine Learning Research
Place of publication
—
Event location
Honolulu, USA
Event date
Jul 23, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—