All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bias-Variance Tradeoffs in Single-Sample Binary Gradient Estimators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00357180" target="_blank" >RIV/68407700:21230/21:00357180 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-92659-5_8" target="_blank" >https://doi.org/10.1007/978-3-030-92659-5_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-92659-5_8" target="_blank" >10.1007/978-3-030-92659-5_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bias-Variance Tradeoffs in Single-Sample Binary Gradient Estimators

  • Original language description

    Discrete and especially binary random variables occur in many machine learning models, notably in variational autoencoders with binary latent states and in stochastic binary networks. When learning such models, a key tool is an estimator of the gradient of the expected loss with respect to the probabilities of binary variables. The straight-through (ST) estimator gained popularity due to its simplicity and efficiency, in particular in deep networks where unbiased estimators are impractical. Several techniques were proposed to improve over ST while keeping the same low computational complexity: Gumbel-Softmax, ST-Gumbel-Softmax, BayesBiNN, FouST. We conduct a theoretical analysis of bias and variance of these methods in order to understand tradeoffs and verify the originally claimed properties. The presented theoretical results allow for better understanding of these methods and in some cases reveal serious issues.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 43rd DAGM German Conference (DAGM GCPR 2021)

  • ISBN

    978-3-030-92658-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    127-141

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Bonn

  • Event date

    Sep 28, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article