All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reintroducing Straight-Through Estimators as Principled Methods for Stochastic Binary Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00357178" target="_blank" >RIV/68407700:21230/21:00357178 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-92659-5_7" target="_blank" >https://doi.org/10.1007/978-3-030-92659-5_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-92659-5_7" target="_blank" >10.1007/978-3-030-92659-5_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reintroducing Straight-Through Estimators as Principled Methods for Stochastic Binary Networks

  • Original language description

    Training neural networks with binary weights and activa-tions is a challenging problem due to the lack of gradients and difficulty ofoptimization over discrete weights. Many successful experimental resultshave been achieved with empirical straight-through (ST) approaches,proposing a variety of ad-hoc rules for propagating gradients throughnon-differentiable activations and updating discrete weights. At the sametime, ST methods can be truly derived as estimators in the stochasticbinary network (SBN) model with Bernoulli weights. We advance thesederivations to a more complete and systematic study. We analyze proper-ties, estimation accuracy, obtain different forms of correct ST estimatorsfor activations and weights, explain existing empirical approaches andtheir shortcomings, explain how latent weights arise from the mirrordescent method when optimizing over probabilities. This allows to rein-troduce ST methods, long known empirically, as sound approximations,apply them with clarity and develop further improvements.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 43rd DAGM German Conference (DAGM GCPR 2021)

  • ISBN

    978-3-030-92658-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    16

  • Pages from-to

    111-126

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Bonn

  • Event date

    Sep 28, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article