Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371977" target="_blank" >RIV/68407700:21230/23:00371977 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/23:00371977
Result on the web
<a href="https://doi.org/10.1109/CVPR52729.2023.01262" target="_blank" >https://doi.org/10.1109/CVPR52729.2023.01262</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52729.2023.01262" target="_blank" >10.1109/CVPR52729.2023.01262</a>
Alternative languages
Result language
angličtina
Original language name
Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses
Original language description
Visual localization is the task of estimating the camera pose from which a given image was taken and is central to several 3D computer vision applications. With the rapid growth in the popularity of AR/VR/MR devices and cloud based applications, privacy issues are becoming a very im portant aspect of the localization process. Existing work on privacy-preserving localization aims to defend against an attacker who has access to a cloud-based service. In this paper, we show that an attacker can learn about details of a scene without any access by simply querying a localization service. The attack is based on the observation that modern visual localization algorithms are robust to variations in ap pearance and geometry. While this is in general a desired property, it also leads to algorithms localizing objects that are similar enough to those present in a scene. An attacker can thus query a server with a large enough set of images of objects, e.g., obtained from the Internet, and some of them will be localized. The attacker can thus learn about object placements from the camera poses returned by the service (which is the minimal information returned by such a ser vice). In this paper, we develop a proof-of-concept version of this attack and demonstrate its practical feasibility. The attack does not place any requirements on the localization algorithm used, and thus also applies to privacy-preserving representations. Current work on privacy-preserving repre sentations alone is thus insufficient.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
979-8-3503-0129-8
ISSN
1063-6919
e-ISSN
2575-7075
Number of pages
10
Pages from-to
13132-13141
Publisher name
IEEE Computer Society
Place of publication
USA
Event location
Vancouver
Event date
Jun 18, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001062522105043