All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Kripke, Vietoris and Hausdorff Polynomial Functors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373106" target="_blank" >RIV/68407700:21230/23:00373106 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.CALCO.2023.21" target="_blank" >https://doi.org/10.4230/LIPIcs.CALCO.2023.21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.CALCO.2023.21" target="_blank" >10.4230/LIPIcs.CALCO.2023.21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Kripke, Vietoris and Hausdorff Polynomial Functors

  • Original language description

    The Vietoris space of compact subsets of a given Hausdorff space yields an endofunctor V on the category of Hausdorff spaces. Vietoris polynomial endofunctors on that category are built from V, the identity and constant functors by forming products, coproducts and compositions. These functors are known to have terminal coalgebras and we deduce that they also have initial algebras. We present an analogous class of endofunctors on the category of extended metric spaces, using in lieu of V the Hausdorff functor H. We prove that the ensuing Hausdorff polynomial functors have terminal coalgebras and initial algebras. Whereas the canonical constructions of terminal coalgebras for Vietoris polynomial functors take ω steps, one needs ω + ω steps in general for Hausdorff ones. We also give a new proof that the closed set functor on metric spaces has no fixed points.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)

  • ISBN

    978-3-95977-287-7

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    20

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Bloomington

  • Event date

    Jun 19, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article