All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Upper Bound on Antenna Gain and Its Reachability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00375961" target="_blank" >RIV/68407700:21230/24:00375961 - isvavai.cz</a>

  • Result on the web

    <a href="https://mrw2024.org/keynote-speakers/" target="_blank" >https://mrw2024.org/keynote-speakers/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Upper Bound on Antenna Gain and Its Reachability

  • Original language description

    Antenna gain, as a product of radiation efficiency and antenna directivity, is a crucial design parameter with its role even more pronounced in modern and future high-frequency applications, including automotive radars and 6G. As such, the question of its upper bound will be thoroughly addressed in this talk. Starting with the classical works of Uzkov, Bouwkamp, and Harrington and moving forward to recent advanced computational schemes based on modal theory and quadratic programming, it will be demonstrated that the upper bound for antenna gain of a fixed polarization has some unique numerical properties, making it possible to express the solution semi-analytically. The interplay between the electrical size of an antenna, material losses, and bandwidth will be discussed in detail, indicating that all these effects are closely interconnected. The difference between high-directivity (super-directivity) and high-gain (super-gain) will be demonstrated, and the optimal current densities for various antenna design regions will be shown. Considering the excitation of an antenna, i.e., possible mismatch, realized gain is another metric to be optimized. Ways to establish realized gain for multiport antennas and arrays and to identify available degrees of freedom for effective antenna design, in addition to their simultaneous optimization, will be discussed. The talk will conclude with a discussion of open problems and future challenges.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/GM21-19025M" target="_blank" >GM21-19025M: Optimal Electromagnetic Design Based on Exact Reanalysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů