Enhancing Policy Gradient Algorithms with Search in Imperfect Information Games
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377055" target="_blank" >RIV/68407700:21230/24:00377055 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.24963/ijcai.2024/964" target="_blank" >https://doi.org/10.24963/ijcai.2024/964</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2024/964" target="_blank" >10.24963/ijcai.2024/964</a>
Alternative languages
Result language
angličtina
Original language name
Enhancing Policy Gradient Algorithms with Search in Imperfect Information Games
Original language description
Sequential decision-making under uncertainty in multi-agent environments is a fundamental problem in artificial intelligence. Games serve as a base model for these problems. Finding optimal plans in games that model real-world scenarios necessitates scalable algorithms. In games with perfect information, algorithms that use a combination of search and deep reinforcement learning can scale to arbitrary-sized games and achieve superhuman performance. In games with imperfect information, the situation is more challenging due to the nature of the search. This work aims to develop algorithms that use search but can scale into larger games than currently possible.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 33rd International Joint Conference on Artificial Intelligence
ISBN
978-1-956792-04-1
ISSN
1045-0823
e-ISSN
—
Number of pages
2
Pages from-to
8498-8499
Publisher name
International Joint Conferences on Artificial Intelligence Organization
Place of publication
—
Event location
Jeju
Event date
Aug 3, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001347142808094