Smart Grid Seminar: Public EV Charging in Europe
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377730" target="_blank" >RIV/68407700:21230/24:00377730 - isvavai.cz</a>
Result on the web
<a href="https://events.stanford.edu/event/smart-grid-seminar-ev-charging-europe" target="_blank" >https://events.stanford.edu/event/smart-grid-seminar-ev-charging-europe</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Smart Grid Seminar: Public EV Charging in Europe
Original language description
We will explore a study conducted by researchers from CTU Prague and Stanford University, addressing EV charging insights from true datasets from Europe. Based on the insights, we introduce an innovative approach of using machine learning to simulate electric vehicle (EV) charging profiles in urban areas with limited data, a challenge of predicting EV charging behavior influenced by spatio-temporal factors. We will delve into the neural network architecture used to uncover latent charging profiles, focusing on peak power demand and daily load shapes. We highlight the significant impacts of Basic Administrative Units on predicted load curves, providing insights into optimizing EV charging infrastructure. We discuss how this model can help Distribution System Operators (DSOs) efficiently plan EV charging infrastructure expansion in urban settings, as well as balancing opportunities for the grid.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů