Towards Using Machine Learning to Generatively Simulate EV Charging in Urban Areas
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379262" target="_blank" >RIV/68407700:21230/24:00379262 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/24:00379262
Result on the web
<a href="https://www.climatechange.ai/papers/neurips2024/22" target="_blank" >https://www.climatechange.ai/papers/neurips2024/22</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Towards Using Machine Learning to Generatively Simulate EV Charging in Urban Areas
Original language description
This study addresses the challenge of predicting electric vehicle (EV) charging profiles in urban locations with limited data. Utilizing a neural network architecture, we aim to uncover latent charging profiles influenced by spatio-temporal factors. Our model focuses on peak power demand and daily load shapes, providing insights into charging behavior. Our results indicate significant impacts from the type of Basic Administrative Units on predicted load curves, which contributes to the understanding and optimization of EV charging infrastructure in urban settings and allows Distribution System Operators (DSO) to more efficiently plan EV charging infrastructure expansion.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/TS01020030" target="_blank" >TS01020030: The use of Vehicle-to-Grid technology to provide energy flexibility</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů