Absolute Pose from One or Two Scaled and Oriented Features
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380114" target="_blank" >RIV/68407700:21230/24:00380114 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/24:00380114
Result on the web
<a href="https://doi.org/10.1109/CVPR52733.2024.01972" target="_blank" >https://doi.org/10.1109/CVPR52733.2024.01972</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52733.2024.01972" target="_blank" >10.1109/CVPR52733.2024.01972</a>
Alternative languages
Result language
angličtina
Original language name
Absolute Pose from One or Two Scaled and Oriented Features
Original language description
Keypoints used for image matching often include an estimate of the feature scale and orientation. While recent work has demonstrated the advantages of using feature scales and orientations for relative pose estimation, relatively little work has considered their use for absolute pose estimation. We introduce minimal solutions for absolute pose from two oriented feature correspondences in the general case, or one scaled and oriented correspondence given a known vertical direction. Nowadays, assuming a known direction is not particularly restrictive as modern consumer devices, such as smartphones or drones, are equipped with Inertial Measurement Units (IMU) that provide the gravity direction by default. Compared to traditional absolute pose methods requiring three point correspondences, our solvers need a smaller minimal sample, reducing the cost and complexity of robust estimation. Evaluations on large-scale and public real datasets demonstrate the advantage of our methods for fast and accurate localization in challenging conditions. Code is available at https://github.com/danini/absolute-pose-from-oriented-and-sealed-features.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GM22-23183M" target="_blank" >GM22-23183M: New generation of camera geometry solvers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
979-8-3503-5300-6
ISSN
1063-6919
e-ISSN
2575-7075
Number of pages
11
Pages from-to
20870-20880
Publisher name
IEEE Computer Society
Place of publication
Los Alamitos
Event location
Seattle
Event date
Jun 16, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001342515504022