All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fast Relative Pose Estimation using Relative Depth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380521" target="_blank" >RIV/68407700:21230/24:00380521 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/3DV62453.2024.00053" target="_blank" >https://doi.org/10.1109/3DV62453.2024.00053</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/3DV62453.2024.00053" target="_blank" >10.1109/3DV62453.2024.00053</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fast Relative Pose Estimation using Relative Depth

  • Original language description

    In this paper, we revisit the problem of estimating the relative pose from a sparse set of point-correspondences. For each point-correspondence we also estimate the relative depth, i.e. the relative distance to the scene point in the two images. This yields an additional constraint, allowing us to use fewer matches in RANSAC to generate the pose candidates. In the paper we propose two novel minimal solvers: one for general motion and one for the case of known vertical direction. To obtain the relative depth estimates, we explore using scale estimates obtained from a keypoint detector as well as a neural network that directly predicts the relative depth for a pair of patches. We show in experiments that while our estimates are more noisy compared to the purely point-based solvers, the smaller sample size leads to a significantly reduced runtime in settings with high outlier ratios.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    3DV2024: Proceedings of the 2024 International Conference in 3D Vision

  • ISBN

    979-8-3503-6246-6

  • ISSN

    2378-3826

  • e-ISSN

    2475-7888

  • Number of pages

    9

  • Pages from-to

    873-881

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Los Alamitos

  • Event location

    Davos

  • Event date

    Mar 18, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001250581700071