All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multipliers on bi-parameter Haar system Hardy spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00382587" target="_blank" >RIV/68407700:21230/24:00382587 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00208-024-02887-9" target="_blank" >https://doi.org/10.1007/s00208-024-02887-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00208-024-02887-9" target="_blank" >10.1007/s00208-024-02887-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multipliers on bi-parameter Haar system Hardy spaces

  • Original language description

    Let (h(I)) denote the standard Haar system on [0,1], indexed by I is an element of D, the set of dyadic intervals and h(I)circle times h(J )denote the tensor product (s,t) -> h(I)(s)h(J)(t), I, J is an element of D. We consider a class of two-parameter function spaces which are completions of the linear span V(delta(2))of h(I)circle times h(J), I, J is an element of D. This class contains all the spaces of the form X(Y), where X and Y are either the Lebesgue spaces L-p[0,1]or the Hardy spaces H-p[0,1],1 <= p < infinity. We say that D:X(Y) -> X(Y)is a Haar multiplier if D((I)(h)circle times(J)(h))=d(I), Jh(I)circle times h(J), where d(I),J is an element of R, and ask which more elementary operators factor through D. A decisive role is played by the Capon projection C:V(delta(2)) -> V(delta(2))given by Ch(I)circle times h(J)=h(I)circle times h(J )if|I| <= |J|, and Ch(I )circle times h(J)=0if|I|>|J|, as our main result highlights: Given any bounded Haar multiplier D:X(Y) -> X(Y), there exist lambda, mu is an element of R such that lambda C+mu(Id-C) approximately 1-projectionally factors through D, i.e., for all eta > 0, there exist bounded operators A, B so that AB is the identity operator Id, & Vert;A & Vert;<middle dot>& Vert;B & Vert;=1 and & Vert;lambda C+mu(Id-C)-ADB & Vert;<eta. Additionally, if C is unbounded on X(Y), then lambda=mu and then Id either factors through D or Id-D.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Annalen

  • ISSN

    0025-5831

  • e-ISSN

    1432-1807

  • Volume of the periodical

    390

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    84

  • Pages from-to

    5669-5752

  • UT code for WoS article

    001234596800001

  • EID of the result in the Scopus database

    2-s2.0-85194485429