All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Consistency and Robustness of Modified Cramer-Von Mises and Kolmogorov-Cramer Estimators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F13%3A00207291" target="_blank" >RIV/68407700:21240/13:00207291 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/13:00207291

  • Result on the web

    <a href="http://www.tandfonline.com/doi/full/10.1080/03610926.2013.802806#.UoSOq_lLMUs" target="_blank" >http://www.tandfonline.com/doi/full/10.1080/03610926.2013.802806#.UoSOq_lLMUs</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03610926.2013.802806" target="_blank" >10.1080/03610926.2013.802806</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Consistency and Robustness of Modified Cramer-Von Mises and Kolmogorov-Cramer Estimators

  • Original language description

    This article focuses on the minimum distance estimators under two newly introduced modifications of Cramér - von Mises distance. The generalized power form of Cramér - von Mises distance is defined together with the so-called Kolmogorov - Cramér distance which includes both standard Kolmogorov and Cramér - von Mises distances as limiting special cases. We prove the consistency of Kolmogorov-Cramér estimators in the (expected) L1 - norm by direct technique employing domination relations between statistical distances. In our numerical simulation we illustrate the quality of consistency property for sample sizes of the most practical range from n = 10 to n = 500. We study dependence of consistency in L1 - norm on contamination neighborhood of the true model and further the robustness of these two newly defined estimators for normal families and contaminated samples. Numerical simulations are used to compare statistical properties of the minimum Kolmogorov - Cramér, generalized Cramér -von Mises, standard Kolmogorov, and Cramér -von Mises distance estimators of the normal family scale parameter. We deal with the corresponding order of consistency and robustness. The resulting graphs are presented and discussed for the cases of the ontaminated and uncontaminated pseudo-random samples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LG12020" target="_blank" >LG12020: Advanced statistical analysis and non-statistical separation techniques for physical processing detection in data sets sampled by means of elementary particle accelerators.</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communication in Statistics-Theory and Method

  • ISSN

    0361-0926

  • e-ISSN

  • Volume of the periodical

    42

  • Issue of the periodical within the volume

    20

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    3665-3677

  • UT code for WoS article

    000324460300004

  • EID of the result in the Scopus database

    2-s2.0-84884472177