All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Simulation study for consistency and robustness of Cramér-von Mises type estimator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F13%3A00207306" target="_blank" >RIV/68407700:21240/13:00207306 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Simulation study for consistency and robustness of Cramér-von Mises type estimator

  • Original language description

    The contribution focuses on the minimum distance estimators under two newly introduced modifications of Cramér - von Mises distance. The generalized power form of Cramér - von Mises distance is defined together with the so called Kolmogorov - Cramér distance which includes both standard Kolmogorov and Cramér - von Mises distances as limiting special cases. We prove the consistency of Kolmogorov - Cramér estimators in the (expected) L1 - norm. In our numerical simulation we illustrate the quality of consistency property for sample sizes of the most practical range from n = 10 to n = 500. We study dependence of consistency in L1 - norm on contamination neighbourhood of the true model and further the robustness of these two newly defined estimators for normal families and contaminated samples.The resulting graphs are presented and discussed for the cases of the contaminated and uncontaminated pseudo-random samples.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LG12020" target="_blank" >LG12020: Advanced statistical analysis and non-statistical separation techniques for physical processing detection in data sets sampled by means of elementary particle accelerators.</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů