All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameterized Complexity of DAG Partitioning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F13%3A00209347" target="_blank" >RIV/68407700:21240/13:00209347 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-642-38233-8_5" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-38233-8_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-38233-8_5" target="_blank" >10.1007/978-3-642-38233-8_5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameterized Complexity of DAG Partitioning

  • Original language description

    The goal of tracking the origin of short, distinctive phrases (memes) that propagate through the web in reaction to current events has been formalized as DAG Partitioning: given a directed acyclic graph, delete edges of minimum weight such that each resulting connected component of the underlying undirected graph contains only one sink. Motivated by NP-hardness and hardness of approximation results, we consider the parameterized complexity of this problem. We show that it can be solved in $O(2^k cdot n^2)$ time, where $k$ is the number of edge deletions, proving fixed-parameter tractability for parameter $k$. We then show that unless the Exponential Time Hypothesis (ETH) fails, this cannot be improved to $2^{o(k)} cdot n^{O(1)}$; further, DAG Partitioning does not have a polynomial kernel unless NP ? coNP/poly. Finally, given a tree decomposition of width $w$, we show how to solve DAG Partitioning in $2^{O(w^2)} cdot n$ time, improving a known algorithm for the parameter pathwidth.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    978-3-642-38232-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    49-60

  • Publisher name

    Springer Science+Business Media

  • Place of publication

    Berlin

  • Event location

    Barcelona

  • Event date

    May 22, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article