Parameterized Complexity of DAG Partitioning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F13%3A00209347" target="_blank" >RIV/68407700:21240/13:00209347 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-642-38233-8_5" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-38233-8_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-38233-8_5" target="_blank" >10.1007/978-3-642-38233-8_5</a>
Alternative languages
Result language
angličtina
Original language name
Parameterized Complexity of DAG Partitioning
Original language description
The goal of tracking the origin of short, distinctive phrases (memes) that propagate through the web in reaction to current events has been formalized as DAG Partitioning: given a directed acyclic graph, delete edges of minimum weight such that each resulting connected component of the underlying undirected graph contains only one sink. Motivated by NP-hardness and hardness of approximation results, we consider the parameterized complexity of this problem. We show that it can be solved in $O(2^k cdot n^2)$ time, where $k$ is the number of edge deletions, proving fixed-parameter tractability for parameter $k$. We then show that unless the Exponential Time Hypothesis (ETH) fails, this cannot be improved to $2^{o(k)} cdot n^{O(1)}$; further, DAG Partitioning does not have a polynomial kernel unless NP ? coNP/poly. Finally, given a tree decomposition of width $w$, we show how to solve DAG Partitioning in $2^{O(w^2)} cdot n$ time, improving a known algorithm for the parameter pathwidth.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-642-38232-1
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
49-60
Publisher name
Springer Science+Business Media
Place of publication
Berlin
Event location
Barcelona
Event date
May 22, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—