Scalable Parallel Generation of Very Large Sparse Benchmark Matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F14%3A00217676" target="_blank" >RIV/68407700:21240/14:00217676 - isvavai.cz</a>
Result on the web
<a href="http://80.link.springer.com.dialog.cvut.cz/chapter/10.1007/978-3-642-55224-3_18" target="_blank" >http://80.link.springer.com.dialog.cvut.cz/chapter/10.1007/978-3-642-55224-3_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-55224-3_18" target="_blank" >10.1007/978-3-642-55224-3_18</a>
Alternative languages
Result language
angličtina
Original language name
Scalable Parallel Generation of Very Large Sparse Benchmark Matrices
Original language description
We present a method and an accompanying algorithm for scalable parallel generation of sparse matrices intended primarily for benchmarking purposes, namely for evaluation of performance and scalability of generic massively parallel algorithms that involvesparse matrices. The proposed method is based on enlargement of small input matrices, which are supposed to be obtained from public sparse matrix collections containing numerous matrices arising in different application domains and thus having differentstructural and numerical properties. The resulting matrices are distributed among processors of a parallel computer system. The enlargement process is designed so its users may easily control structural and numerical properties of resulting matrices aswell as the distribution of their nonzero elements to particular processors.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F12%2F2011" target="_blank" >GAP202/12/2011: Parallel Input/Output Algorithms for Very Large Sparse Matrices</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Parallel Processing and Applied Mathematics
ISBN
978-3-642-55224-3
ISSN
0302-9743
e-ISSN
—
Number of pages
10
Pages from-to
178-187
Publisher name
Springer-Verlag
Place of publication
Berlin
Event location
Warsaw
Event date
Sep 8, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000349159200018