Downsampling Algorithms for Large Sparse Matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F15%3A00218582" target="_blank" >RIV/68407700:21240/15:00218582 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs10766-014-0315-8#" target="_blank" >http://link.springer.com/article/10.1007%2Fs10766-014-0315-8#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10766-014-0315-8" target="_blank" >10.1007/s10766-014-0315-8</a>
Alternative languages
Result language
angličtina
Original language name
Downsampling Algorithms for Large Sparse Matrices
Original language description
Mapping of sparse matrices to processors of a parallel system may have a significant impact on the development of sparse-matrix algorithms and, in effect, to their efficiency. We present and empirically compare two downsampling algorithms for sparse matrices. The first algorithm is independent of particular matrix-processors mapping, while the second one is adapted for cases where matrices are partitioned among processors according to contiguous chunks of rows/columns. We show that the price for the versatility of the first algorithm is the collective communication performed by all processors. The second algorithm uses more efficient communication strategy, which stems from the knowledge of mapping of matrices to processors, and effectively outperformsthe first algorithm in terms of running time.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F12%2F2011" target="_blank" >GAP202/12/2011: Parallel Input/Output Algorithms for Very Large Sparse Matrices</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Parallel Programming
ISSN
0885-7458
e-ISSN
—
Volume of the periodical
43
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
679-702
UT code for WoS article
000358648600001
EID of the result in the Scopus database
2-s2.0-84938963170