Nevanlinna extremal measures for polynomials related to q^-1-Fibonacci polynomials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F16%3A00300674" target="_blank" >RIV/68407700:21240/16:00300674 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0196885816000300" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0196885816000300</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aam.2016.02.005" target="_blank" >10.1016/j.aam.2016.02.005</a>
Alternative languages
Result language
angličtina
Original language name
Nevanlinna extremal measures for polynomials related to q^-1-Fibonacci polynomials
Original language description
The aim of this paper is the study of q^{-1}-Fibonacci polynomials with 0<q<1. First, the q^{-1}-Fibonacci polynomials are related to a q-exponential function which allows an asymptotic analysis to be worked out. Second, related basic orthogonal polynomials are investigated with the emphasis on their orthogonality properties. In particular, a compact formula for the reproducing kernel is obtained that allows to describe all the N-extremal measures of orthogonality in terms of basic hypergeometric functions and their zeros. Two special cases involving q-sine and q-cosine are discussed in more detail.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-11058S" target="_blank" >GA13-11058S: Spectral analysis of operators and its applications in quantum mechanics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Mathematics
ISSN
0196-8858
e-ISSN
—
Volume of the periodical
78
Issue of the periodical within the volume
July
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
56-75
UT code for WoS article
000376836000003
EID of the result in the Scopus database
2-s2.0-84960193360