All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reducing Cold Start Problems in Educational Recommender Systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F16%3A00302590" target="_blank" >RIV/68407700:21240/16:00302590 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7727600&isnumber=7726591" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7727600&isnumber=7726591</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN.2016.7727600" target="_blank" >10.1109/IJCNN.2016.7727600</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reducing Cold Start Problems in Educational Recommender Systems

  • Original language description

    Educational data can help us to personalise university information systems. In this paper, we show how educational data can be used to improve the performance of interaction-based recommender systems. Educational data is transformed to student profiles helping to prevent cold start problems when recommending projects to students with few user interactions. Our results show that our hybrid interaction based recommender boosted by educational profiles significantly outperforms bestseller recommendation, which is a mainstream recommendation method for cold start users.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2016 International Joint Conference on Neural Networks (IJCNN)

  • ISBN

    978-1-5090-0620-5

  • ISSN

    2161-4407

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    3143-3149

  • Publisher name

    American Institute of Physics and Magnetic Society of the IEEE

  • Place of publication

    San Francisco

  • Event location

    Vancouver

  • Event date

    Jul 24, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article