All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MoCham: Robust Hierarchical Clustering Based on Multi-objective Optimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F16%3A00307016" target="_blank" >RIV/68407700:21240/16:00307016 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/document/7836754/" target="_blank" >http://ieeexplore.ieee.org/document/7836754/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICDMW.2016.0123" target="_blank" >10.1109/ICDMW.2016.0123</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MoCham: Robust Hierarchical Clustering Based on Multi-objective Optimization

  • Original language description

    Many clustering evaluation methods are computed as a ratio between two objectives, typically these objectives express the compactness of all clusters while trying to maximize the separation between individual clusters. However, the clustering process itself is typically implemented as a single objective problem: optimizing a linear combination of between-points closeness. We propose MoCham - a hierarchical clustering algorithm that uses a multi-objective optimization for finding the optimal data points to merge. Our results suggest that a careful candidate selection of Pareto dominating pairs leads to more robust clustering results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2016 IEEE 16th International Conference on Data Mining Workshops

  • ISBN

    978-1-5090-5910-2

  • ISSN

    2375-9259

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    831-838

  • Publisher name

    IEEE Computer Society

  • Place of publication

    USA

  • Event location

    Barcelona

  • Event date

    Dec 12, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article