All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Recommending News Articles using Rule-based Classifier

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F17%3A00314021" target="_blank" >RIV/68407700:21240/17:00314021 - isvavai.cz</a>

  • Result on the web

    <a href="https://daz2017.kiv.zcu.cz/data/DaZ2017-Sbornik-final.pdf" target="_blank" >https://daz2017.kiv.zcu.cz/data/DaZ2017-Sbornik-final.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Recommending News Articles using Rule-based Classifier

  • Original language description

    In this paper we summarize our experiments with a rule-based classifier as a recommender within CLEF NewsREEL 2017 challenge. Systems that recommend news articles are suitable to solve information overflow in digital editions of newspapers, when users have problems choosing what they want to read. They face challenges unknown to the systems recommending books or movies such as a frequency of producing the new content. This paper deals with an approach based on association rules acting as a classifier. In our approach we experimented with settings that allow reducing the amount of rules used for the classification and increasing the performance that is crucial for real recommendations.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Data a znalosti 2017

  • ISBN

    978-80-261-0720-0

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    51-55

  • Publisher name

    Západočeská univerzita v Plzni

  • Place of publication

    Plzeň

  • Event location

    Plzeň

  • Event date

    Oct 5, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article