All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Existence, Consistency and Computer Simulation for Selected Variants of Minimum Distance Estimators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00316345" target="_blank" >RIV/68407700:21240/18:00316345 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/18:00316345

  • Result on the web

    <a href="http://dx.doi.org/10.14736/kyb-2018-2-0336" target="_blank" >http://dx.doi.org/10.14736/kyb-2018-2-0336</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14736/kyb-2018-2-0336" target="_blank" >10.14736/kyb-2018-2-0336</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Existence, Consistency and Computer Simulation for Selected Variants of Minimum Distance Estimators

  • Original language description

    The paper deals with sufficient conditions for the existence of general approximate minimum distance estimator (AMDE) of a probability density function $f_0$ on the real line. It shows that the AMDE always exists when the bounded $phi$-divergence, Kolmogorov, L'evy, Cram'er, or discrepancy distance is used. Consequently, $n^{-1/2}$ consistency rate in any bounded $phi$-divergence is established for Kolmogorov, L'evy, and discrepancy estimators under the condition that the degree of variations of the corresponding family of densities is finite. A simulation experiment empirically studies the performance of the approximate minimum Kolmogorov estimator (AMKE) and some histogram-based variants of approximate minimum divergence estimators, like power type and Le,Cam, under six distributions (Uniform, Normal, Logistic, Laplace, Cauchy, Weibull). A comparison with the standard estimators (moment/maximum likelihood/median) is provided for sample sizes $n=10,20,50,120,250$. The simulation analyzes the behaviour of estimators through different families of distributions. It is shown that the performance of AMKE differs from the other estimators with respect to family type and that the AMKE estimators cope more easily with the Cauchy distribution than standard or divergence based estimators, especially for small sample sizes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    15

  • Pages from-to

    336-350

  • UT code for WoS article

    000435168400008

  • EID of the result in the Scopus database

    2-s2.0-85047380840