All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Minimum Kolmogorov Distance and Minimum Blended phi-divergence Estimators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F06%3A00164488" target="_blank" >RIV/68407700:21340/06:00164488 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Minimum Kolmogorov Distance and Minimum Blended phi-divergence Estimators

  • Original language description

    We show that the approximate minimum distance estimator (ADE) exists if certain conditions are fulfiIled and that the approximate minimum Kolmogorov distance estimator (AKE) always exists. We define the robustness of ADE and we prove that AKE is always arobust estimator of the true density. Minimum Kolmogorov distance estimates produce estimators consistent in the L1-norm under weaker conditions than in cases of some other types of estimators. We used our simulation software to examine the behavior ofADE in comparison with standard estimators known for their good statistical properties.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů