An Overview of Transfer Learning Focused on Asymmetric Heterogeneous Approaches
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00322508" target="_blank" >RIV/68407700:21240/18:00322508 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-319-94809-6_1#citeas" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-94809-6_1#citeas</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-94809-6_1" target="_blank" >10.1007/978-3-319-94809-6_1</a>
Alternative languages
Result language
angličtina
Original language name
An Overview of Transfer Learning Focused on Asymmetric Heterogeneous Approaches
Original language description
In practice we often encounter classification tasks. In order to solve these tasks, we need a sufficient amount of quality data for the construction of an accurate classification model. However, in some cases, the collection of quality data poses a demanding challenge in terms of time and finances. For example in the medical area, we encounter lack of data about patients. Transfer learning introduces the idea that a possible solution can be combining data from different domains represented by different feature spaces relating to the same task. We can also transfer knowledge from a different but related task that has been learned already. This overview focuses on the current progress in the novel area of asymmetric heterogeneous transfer learning. We discuss approaches and methods for solving these types of transfer learning tasks. Furthermore, we mention the most used metrics and the possibility of using metric or similarity learning.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Data Management Technologies and Applications
ISBN
978-3-319-94809-6
ISSN
—
e-ISSN
1865-0929
Number of pages
24
Pages from-to
3-26
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Madrid
Event date
Jul 24, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—