All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Discovering predictive ensembles for transfer learning and meta-learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00328802" target="_blank" >RIV/68407700:21240/18:00328802 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10994-017-5682-0" target="_blank" >https://link.springer.com/article/10.1007/s10994-017-5682-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10994-017-5682-0" target="_blank" >10.1007/s10994-017-5682-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Discovering predictive ensembles for transfer learning and meta-learning

  • Original language description

    Recent meta-learning approaches are oriented towards algorithm selection, optimization or recommendation of existing algorithms. In this article we show how data-tailored algorithms can be constructed from building blocks on small data sub-samples. Building blocks, typically weak learners, are optimized and evolved into data-tailored hierarchical ensembles. Good-performing algorithms discovered by evolutionary algorithm can be reused on data sets of comparable complexity. Furthermore, these algorithms can be scaled up to model large data sets. We demonstrate how one particular template (simple ensemble of fast sigmoidal regression models) outperforms state-of-the-art approaches on the Airline data set. Evolved hierarchical ensembles can therefore be beneficial as algorithmic building blocks in meta-learning, including meta-learning at scale.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Machine Learning

  • ISSN

    0885-6125

  • e-ISSN

    1573-0565

  • Volume of the periodical

    107

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    31

  • Pages from-to

    177-207

  • UT code for WoS article

    000419684700007

  • EID of the result in the Scopus database