All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On performance of Meta-learning Templates on Different Datasets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F12%3A00197266" target="_blank" >RIV/68407700:21240/12:00197266 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/IJCNN.2012.6252379" target="_blank" >http://dx.doi.org/10.1109/IJCNN.2012.6252379</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN.2012.6252379" target="_blank" >10.1109/IJCNN.2012.6252379</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On performance of Meta-learning Templates on Different Datasets

  • Original language description

    Meta-learning templates are data-tailored algo- rithms that produce supervised models. When a template is evolved on a particular dataset, it is supposed to generate good models not only on this data set but also on similar data. In this paper, we will investigate one possible way of measuring the similarity of datasets and whether it can be used to estimate if meta-learning templates produce good models. We performed experiments on several well known data sets from the UCI machine learning repository and analyzed both the similarity of datasets and templates in the space of performance meta- features (landmarking). Our results show that the most universal algorithms (in terms of average performance) for supervised learning are the complex hierarchicaltemplates evolved by our SpecGen approach.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, June 10-15, 2012

  • ISBN

    978-1-4673-1490-9

  • ISSN

    1098-7576

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    1-7

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Brisbane

  • Event date

    Jun 10, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000309341300017