Spectral representation of some weighted Hankel matrices and orthogonal polynomials from the Askey scheme
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00326592" target="_blank" >RIV/68407700:21240/19:00326592 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/19:00326592
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2018.11.036" target="_blank" >https://doi.org/10.1016/j.jmaa.2018.11.036</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2018.11.036" target="_blank" >10.1016/j.jmaa.2018.11.036</a>
Alternative languages
Result language
angličtina
Original language name
Spectral representation of some weighted Hankel matrices and orthogonal polynomials from the Askey scheme
Original language description
We provide an explicit spectral representation for several weighted Hankel matrices by means of the so called commutator method. These weighted Hankel matrices are found in the commutant of Jacobi matrices associated with orthogonal polynomials from the Askey scheme whose Jacobi parameters are polynomial functions of the index. We also present two more results of general interest. First, we give a complete description of the commutant of a Jacobi matrix. Second, we deduce a necessary and sufficient condition for a weighted Hankel matrix commuting with a Jacobi matrix to determine a unique self-adjoint operator on ell^2(N_0).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
472
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
483-509
UT code for WoS article
000456896000029
EID of the result in the Scopus database
2-s2.0-85056740119