On Hankel matrices commuting with Jacobi matrices from the Askey scheme
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00337228" target="_blank" >RIV/68407700:21240/20:00337228 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/20:00337228
Result on the web
<a href="https://doi.org/10.1016/j.laa.2020.01.016" target="_blank" >https://doi.org/10.1016/j.laa.2020.01.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2020.01.016" target="_blank" >10.1016/j.laa.2020.01.016</a>
Alternative languages
Result language
angličtina
Original language name
On Hankel matrices commuting with Jacobi matrices from the Askey scheme
Original language description
A complete characterization is provided of Hankel matrices commuting with Jacobi matrices which correspond to hypergeometric orthogonal polynomials from the Askey scheme. It follows, as the main result of the paper, that the generalized Hilbert matrix is the only prominent infinite-rank Hankel matrix which, if regarded as an operator on l2(N0), is diagonalizable by application of the commutator method with Jacobi matrices from the mentioned families.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
1873-1856
Volume of the periodical
591
Issue of the periodical within the volume
April
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
235-267
UT code for WoS article
000517849200015
EID of the result in the Scopus database
2-s2.0-85077808288