Complexity of the Steiner Network Problem with Respect to the Number of Terminals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00334098" target="_blank" >RIV/68407700:21240/19:00334098 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2019.25" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.STACS.2019.25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2019.25" target="_blank" >10.4230/LIPIcs.STACS.2019.25</a>
Alternative languages
Result language
angličtina
Original language name
Complexity of the Steiner Network Problem with Respect to the Number of Terminals
Original language description
In the Directed Steiner Network problem we are given an arc-weighted digraph G, a set of terminals $Tsubseteq V(G)$ with |T|=q, and an (unweighted) directed request graph R with V(R)=T. Our task is to output a subgraph $H subseteq G$ of the minimum cost such that there is a directed path from s to t in H for all st in A(R). It is known that the problem can be solved in time $|V(G)|^{O(|A(R)|)}$ [Feldman&Ruhl, SIAM J. Comput. 2006] and cannot be solved in time $|V(G)|^{o(|A(R)|)}$ even if G is planar, unless the Exponential-Time Hypothesis (ETH) fails [Chitnis et al., SODA 2014]. However, the reduction (and other reductions showing hardness of the problem) only shows that the problem cannot be solved in time $|V(G)|^{o(q)}$, unless ETH fails. Therefore, there is a significant gap in the complexity with respect to q in the exponent. We show that textsc{Directed Steiner Network} is solvable in time $f(q)cdot |V(G)|^{O(c_g cdot q)}$, where $c_g$ is a constant depending solely on the genus of G and f is a computable function. We complement this result by showing that there is no $f(q)cdot |V(G)|^{o(q^2/ log q)}$ algorithm for any function f for the problem on general graphs, unless ETH fails.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-20065S" target="_blank" >GA17-20065S: Tight Parameterized Results for Directed Connectivity Problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany
ISBN
978-3-95977-100-9
ISSN
—
e-ISSN
1868-8969
Number of pages
17
Pages from-to
"25:1"-"25:17"
Publisher name
Schloss Dagstuhl - Leibniz Center for Informatics
Place of publication
Wadern
Event location
Berlín
Event date
Mar 13, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000472795800024