Classical Superintegrable Systems in a Magnetic Field that Separate in Cartesian Coordinates
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00341061" target="_blank" >RIV/68407700:21240/20:00341061 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/20:00341061
Result on the web
<a href="https://doi.org/10.3842/SIGMA.2020.015" target="_blank" >https://doi.org/10.3842/SIGMA.2020.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3842/SIGMA.2020.015" target="_blank" >10.3842/SIGMA.2020.015</a>
Alternative languages
Result language
angličtina
Original language name
Classical Superintegrable Systems in a Magnetic Field that Separate in Cartesian Coordinates
Original language description
We consider superintegrability in classical mechanics in the presence of magnetic fields. We focus on three-dimensional systems which are separable in Cartesian coordinates. We construct all possible minimally and maximally superintegrable systems in this class with additional integrals quadratic in the momenta. Together with the results of our previous paper [J. Phys. A: Math. Theor. 50 (2017), 245202, 24 pages], where one of the additional integrals was by assumption linear, we conclude the classification of three-dimensional quadratically minimally and maximally superintegrable systems separable in Cartesian coordinates. We also describe two particular methods for constructing superintegrable systems with higher-order integrals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrable systems in magnetic fields in three spatial dimensions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)
ISSN
1815-0659
e-ISSN
1815-0659
Volume of the periodical
16
Issue of the periodical within the volume
015
Country of publishing house
UA - UKRAINE
Number of pages
35
Pages from-to
—
UT code for WoS article
000519575800001
EID of the result in the Scopus database
2-s2.0-85082420222