All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classical Superintegrable Systems in a Magnetic Field that Separate in Cartesian Coordinates

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00341061" target="_blank" >RIV/68407700:21240/20:00341061 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/20:00341061

  • Result on the web

    <a href="https://doi.org/10.3842/SIGMA.2020.015" target="_blank" >https://doi.org/10.3842/SIGMA.2020.015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3842/SIGMA.2020.015" target="_blank" >10.3842/SIGMA.2020.015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classical Superintegrable Systems in a Magnetic Field that Separate in Cartesian Coordinates

  • Original language description

    We consider superintegrability in classical mechanics in the presence of magnetic fields. We focus on three-dimensional systems which are separable in Cartesian coordinates. We construct all possible minimally and maximally superintegrable systems in this class with additional integrals quadratic in the momenta. Together with the results of our previous paper [J. Phys. A: Math. Theor. 50 (2017), 245202, 24 pages], where one of the additional integrals was by assumption linear, we conclude the classification of three-dimensional quadratically minimally and maximally superintegrable systems separable in Cartesian coordinates. We also describe two particular methods for constructing superintegrable systems with higher-order integrals.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrable systems in magnetic fields in three spatial dimensions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

  • ISSN

    1815-0659

  • e-ISSN

    1815-0659

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    015

  • Country of publishing house

    UA - UKRAINE

  • Number of pages

    35

  • Pages from-to

  • UT code for WoS article

    000519575800001

  • EID of the result in the Scopus database

    2-s2.0-85082420222