Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F17%3A00313771" target="_blank" >RIV/68407700:21240/17:00313771 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/17:00313771
Result on the web
<a href="http://dx.doi.org/10.1088/1751-8121/aa6f68" target="_blank" >http://dx.doi.org/10.1088/1751-8121/aa6f68</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/aa6f68" target="_blank" >10.1088/1751-8121/aa6f68</a>
Alternative languages
Result language
angličtina
Original language name
Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables
Original language description
We consider three dimensional superintegrable systems in a magnetic field. We study the class of such systems which separate in Cartesian coordinates in the limit when the magnetic field vanishes, i.e. possess two second order integrals of motion of the 'Cartesian type'. For such systems we look for additional integrals up to second order in momenta which make these systems minimally or maximally superintegrable and construct their polynomial algebras of integrals and their trajectories. We observe that the structure of the leading order terms of the Cartesian type integrals should be considered in a more general form than for the case without magnetic field.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrable systems in magnetic fields in three spatial dimensions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
50
Issue of the periodical within the volume
24
Country of publishing house
GB - UNITED KINGDOM
Number of pages
24
Pages from-to
—
UT code for WoS article
000401618600003
EID of the result in the Scopus database
2-s2.0-85019642302