All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Space-Efficient k-d Tree-Based Storage Format for Sparse Tensors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00341786" target="_blank" >RIV/68407700:21240/20:00341786 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1145/3369583.3392692" target="_blank" >https://doi.org/10.1145/3369583.3392692</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3369583.3392692" target="_blank" >10.1145/3369583.3392692</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Space-Efficient k-d Tree-Based Storage Format for Sparse Tensors

  • Original language description

    Computations with tensors are widespread in many scientific areas. Usually, the used tensors are very large but sparse, i.e., the vast majority of their elements are zero. The space complexity of sparse tensor storage formats varies significantly. For overall efficiency, it is important to reduce the execution time and additional space requirements of the initial preprocessing (i.e., converting tensors from common storage formats to the given internal format). The main contributions of this paper are threefold. Firstly, we present a new storage format for sparse tensors, which we call the succinct k-d tree-based tensor (SKTB) format. We compare the space complexity of common tensor storage formats and of the SKTB format and demonstrate the viability of using a tree as a data structurefor sparse tensors. Secondly, we present a parallel space-efficient algorithm for converting tensors to the SKTB format. Thirdly, we demonstrate the computational efficiency of the proposed format in sparse tensor-vector multiplication.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing

  • ISBN

    978-1-4503-7052-3

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    29-33

  • Publisher name

    Association for Computing Machinery

  • Place of publication

    New York

  • Event location

    Stockholm

  • Event date

    Jun 23, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article