On the Classification of Motions of Paradoxically Movable Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00347248" target="_blank" >RIV/68407700:21240/20:00347248 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.20382/jocg.v11i1a22" target="_blank" >https://doi.org/10.20382/jocg.v11i1a22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.20382/jocg.v11i1a22" target="_blank" >10.20382/jocg.v11i1a22</a>
Alternative languages
Result language
angličtina
Original language name
On the Classification of Motions of Paradoxically Movable Graphs
Original language description
Edge lengths of a graph are called flexible if there exist infinitely many non-congruent realizations of the graph in the plane satisfying these edge lengths. It has been shown recently that a graph has flexible edge lengths if and only if the graph has a special type of edge coloring called NAC-coloring. We address the question how to determine paradoxical motions of a generically rigid graph, namely, proper flexible edge lengths of the graph. We do so using the set of all NAC-colorings of the graph and restrictions to 4-cycle subgraphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational Geometry
ISSN
1920-180X
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
1
Country of publishing house
CA - CANADA
Number of pages
28
Pages from-to
548-575
UT code for WoS article
000634119900020
EID of the result in the Scopus database
2-s2.0-85104278517