On the existence of paradoxical motions of generically rigid graphs on the sphere
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00350288" target="_blank" >RIV/68407700:21240/21:00350288 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1137/19M1289467" target="_blank" >https://doi.org/10.1137/19M1289467</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/19M1289467" target="_blank" >10.1137/19M1289467</a>
Alternative languages
Result language
angličtina
Original language name
On the existence of paradoxical motions of generically rigid graphs on the sphere
Original language description
We interpret realizations of a graph on the sphere up to rotations as elements of a moduli space of curves of genus zero. We focus on those graphs that admit an assignment of edge lengths on the sphere resulting in a flexible object. Our interpretation of realizations allows us to provide a combinatorial characterization of these graphs in terms of the existence of particular colorings of the edges. Moreover, we determine necessary relations for flexibility between the spherical lengths of the edges. We conclude by classifying all possible motions on the sphere of the complete bipartite graph with 3+3 vertices where no two vertices coincide or are antipodal.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
1095-7146
Volume of the periodical
35
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
37
Pages from-to
325-361
UT code for WoS article
000636039400018
EID of the result in the Scopus database
2-s2.0-85104227089