All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the existence of paradoxical motions of generically rigid graphs on the sphere

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00350288" target="_blank" >RIV/68407700:21240/21:00350288 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1137/19M1289467" target="_blank" >https://doi.org/10.1137/19M1289467</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/19M1289467" target="_blank" >10.1137/19M1289467</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the existence of paradoxical motions of generically rigid graphs on the sphere

  • Original language description

    We interpret realizations of a graph on the sphere up to rotations as elements of a moduli space of curves of genus zero. We focus on those graphs that admit an assignment of edge lengths on the sphere resulting in a flexible object. Our interpretation of realizations allows us to provide a combinatorial characterization of these graphs in terms of the existence of particular colorings of the edges. Moreover, we determine necessary relations for flexibility between the spherical lengths of the edges. We conclude by classifying all possible motions on the sphere of the complete bipartite graph with 3+3 vertices where no two vertices coincide or are antipodal.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

    1095-7146

  • Volume of the periodical

    35

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    37

  • Pages from-to

    325-361

  • UT code for WoS article

    000636039400018

  • EID of the result in the Scopus database

    2-s2.0-85104227089