All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounded Sub-optimal Multi-Robot Path Planning Using Satisfiability Modulo Theory (SMT) Approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00348042" target="_blank" >RIV/68407700:21240/20:00348042 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/IROS45743.2020.9341047" target="_blank" >https://doi.org/10.1109/IROS45743.2020.9341047</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IROS45743.2020.9341047" target="_blank" >10.1109/IROS45743.2020.9341047</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounded Sub-optimal Multi-Robot Path Planning Using Satisfiability Modulo Theory (SMT) Approach

  • Original language description

    Multi-robot path planning (MRPP) is a task of planning collision free paths for a group of robots in a graph. Each robot starts in its individual starting vertex and its task is to reach a given goal vertex. Existing techniques for solving MRPP optimally under various objectives include search-based and compilation-based approaches. Often however finding an optimal solution is too difficult hence sub-optimal algorithms that trade-off the quality of solutions and the runtime have been devised. We suggest eSMT-CBS, a new bounded suboptimal algorithm built on top of recent compilation-based method for optimal MRPP based on satisfiability modulo theories (SMT). We compare eSMT-CBS with ECBS, a major representative of bounded sub-optimal search-based algorithms. The experimental evaluation shows significant advantage of eSMT-CBS across variety of scenarios.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Intelligent Algorithms for Generalized Variants of Multi-Agent Path Finding</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

  • ISBN

    978-1-7281-6212-6

  • ISSN

    2153-0858

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    11631-11637

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Los Alamitos

  • Event location

    Las Vegas

  • Event date

    Oct 24, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article