All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Transfer learning based few-shot classification using optimal transport mapping from preprocessed latent space of backbone neural network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00356449" target="_blank" >RIV/68407700:21240/21:00356449 - isvavai.cz</a>

  • Result on the web

    <a href="https://proceedings.mlr.press/v140/chobola21a.html" target="_blank" >https://proceedings.mlr.press/v140/chobola21a.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Transfer learning based few-shot classification using optimal transport mapping from preprocessed latent space of backbone neural network

  • Original language description

    The MetaDL Challenge 2020 focused on image classification tasks in few-shot settings. This paper describes second best submission in the competition. Our meta learning approach modifies the distribution of classes in a latent space produced by a backbone network for each class in order to better follow the Gaussian distribution. After this operation which we call Latent Space Transform algorithm, centers of classes are further aligned in an iterative fashion of the Expectation Maximisation algorithm to utilize information in unlabeled data that are often provided on top of few labelled instances. For this task, we utilize optimal transport mapping using the Sinkhorn algorithm. Our experiments show that this approach outperforms previous works as well as other variants of the algorithm, using K-Nearest Neighbour algorithm, Gaussian Mixture Models, etc.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-18080S" target="_blank" >GA18-18080S: Fusion-Based Knowledge Discovery in Human Activity Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AAAI Workshop on Meta-Learning and MetaDL Challenge

  • ISBN

  • ISSN

    2640-3498

  • e-ISSN

    2640-3498

  • Number of pages

    9

  • Pages from-to

    29-37

  • Publisher name

    Proceedings of Machine Learning Research

  • Place of publication

  • Event location

    Virtuální

  • Event date

    Feb 8, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article