Transfer learning based few-shot classification using optimal transport mapping from preprocessed latent space of backbone neural network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00356449" target="_blank" >RIV/68407700:21240/21:00356449 - isvavai.cz</a>
Result on the web
<a href="https://proceedings.mlr.press/v140/chobola21a.html" target="_blank" >https://proceedings.mlr.press/v140/chobola21a.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Transfer learning based few-shot classification using optimal transport mapping from preprocessed latent space of backbone neural network
Original language description
The MetaDL Challenge 2020 focused on image classification tasks in few-shot settings. This paper describes second best submission in the competition. Our meta learning approach modifies the distribution of classes in a latent space produced by a backbone network for each class in order to better follow the Gaussian distribution. After this operation which we call Latent Space Transform algorithm, centers of classes are further aligned in an iterative fashion of the Expectation Maximisation algorithm to utilize information in unlabeled data that are often provided on top of few labelled instances. For this task, we utilize optimal transport mapping using the Sinkhorn algorithm. Our experiments show that this approach outperforms previous works as well as other variants of the algorithm, using K-Nearest Neighbour algorithm, Gaussian Mixture Models, etc.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-18080S" target="_blank" >GA18-18080S: Fusion-Based Knowledge Discovery in Human Activity Data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AAAI Workshop on Meta-Learning and MetaDL Challenge
ISBN
—
ISSN
2640-3498
e-ISSN
2640-3498
Number of pages
9
Pages from-to
29-37
Publisher name
Proceedings of Machine Learning Research
Place of publication
—
Event location
Virtuální
Event date
Feb 8, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—