All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gaussian Latent Representations for Uncertainty Estimation using Mahalanobis Distance in Deep Classifiers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00374356" target="_blank" >RIV/68407700:21730/23:00374356 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ICCVW60793.2023.00483" target="_blank" >https://doi.org/10.1109/ICCVW60793.2023.00483</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCVW60793.2023.00483" target="_blank" >10.1109/ICCVW60793.2023.00483</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gaussian Latent Representations for Uncertainty Estimation using Mahalanobis Distance in Deep Classifiers

  • Original language description

    Recent works show that the data distribution in a network's latent space is useful for estimating classification uncertainty and detecting Out-Of-Distribution (OOD) samples. To obtain a well-regularized latent space that is conducive for uncertainty estimation, existing methods bring in significant changes to model architectures and training procedures. In this paper, we present a lightweight and high-performance regularization method for Mahalanobis distance (MD)-based uncertainty prediction, and that requires minimal changes to the network's architecture. To derive Gaussian latent representation favourable for MD calculation, we introduce a self-supervised representation learning method that separates in-class representations into multiple Gaussians. Classes with non-Gaussian representations are automatically identified and dynamically clustered into multiple new classes that are approximately Gaussian. Evaluation on standard OOD benchmarks shows that our method achieves state-of-the-art results on OOD detection and is very competitive on predictive probability calibration. Finally, we show the applicability of our method to a real-life computer vision use case on microorganism classification.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICCVW2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)

  • ISBN

    979-8-3503-0744-3

  • ISSN

    2473-9936

  • e-ISSN

    2473-9944

  • Number of pages

    10

  • Pages from-to

    4490-4499

  • Publisher name

    IEEE

  • Place of publication

    Anchorage, Alaska

  • Event location

    Paris

  • Event date

    Oct 2, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001156680304062