OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351131" target="_blank" >RIV/68407700:21230/21:00351131 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.18653/v1/2021.naacl-industry.30" target="_blank" >https://doi.org/10.18653/v1/2021.naacl-industry.30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2021.naacl-industry.30" target="_blank" >10.18653/v1/2021.naacl-industry.30</a>
Alternative languages
Result language
angličtina
Original language name
OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation
Original language description
Detecting an Out-of-Domain (OOD) utterance is crucial for a robust dialog system. Most dialog systems are trained on a pool of annotated OOD data to achieve this goal. However, collecting the annotated OOD data for a given domain is an expensive process. To mitigate this issue, previous works have proposed generative adversarial networks (GAN) based models to generate OOD data for a given domain automatically. However, these proposed models do not work directly with the text. They work with the text’s latent space instead, enforcing these models to include components responsible for encoding text into latent space and decoding it back, such as auto-encoder. These components increase the model complexity, making it difficult to train. We propose OodGAN, a sequential generative adversarial network (SeqGAN) based model for OOD data generation. Our proposed model works directly on the text and hence eliminates the need to include an auto-encoder. OOD data generated using OodGAN model outperforms state-of-the-art in OOD detection metrics for ROSTD (67% relative improvement in FPR 0.95) and OSQ datasets (28% relative improvement in FPR 0.95) (Zheng et al., 2020).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers
ISBN
978-1-954085-47-3
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
238-245
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
Stroudsburg
Event location
Online
Event date
Jun 6, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—